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CECRI Madras Unit - Chennai

o Fuel Cells
o Lithium ion Batteries

o Futuristic Batteries




India’s Evolving Energy Transition

Energy demand will double from the present 34 EJ to 75 EJ by 2050

Must achieve greater end-to-end energy security, from raw materials to energy generation processes

As of today, India imports 350 million tons of carbon in the form of fossil energy

2.6 GT CO, is emitted from this carbon energy, making India world’s 3™ largest GHG emitter

Contrastingly, India has 110 billion tons of proven coal reserves, and an additional 450 million tons of
carbonaceous resources in the form of agro residues and MSW

Potential to increase non-fossil clean energy production from ~ 2.7 EJ today to ~ 26 EJ by 2050

To achieve energy security with low carbon footprint, India must:

Reduce carbon demand through improving energy efficiency in all energy consuming processes
Move from thermal generation to integrated gasification combined cycle with Indian coal
gasification coupled with carbon capture utilization and storage

Increase clean power production from biomass, renewables, solar, wind, nuclear, hydroelectricity
Explore energy storage options in the form of batteries, hydrogen, pumped hydro, gravity

Focus on technologies that offer greater prospects for end-to-end self reliance

Increase manufacturing across the energy generation, transmission, utilization value chains



India’s ambitious climate action plan

34 EJ, 2020 75 EJ, 2050

Panchamrit — India’s National Statement @ COP26
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IN PARTNERSSIP WITH ITALY
Total emissions (current) 2.6 Gtep, o
Power 33%
1. 500 GW RE installed capacity by 2030 Light transportation 59
(1)
o N .
2. 50% RE contribution to energy mix by 2030 Agriculture 18%
3. Reduce CO2 emissions by 1 GT from now till 2030 Industry 24%
4. Carbon intensity of GDP to be < 45% by 2030 Heavy transportation 9Y%,
5. Achieve net zero emissions by 2070 Others 15%




H2 for India

Sector coupling energy vector critical to achieve deep decarbonisation of difficult sectors
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H, Opportunity for India

PM Modi's Speeph from Red Fort | 75th Independence Day

oy HEAOLINES [V IN THE LAST 24 HOURS | COVID-19: T15 Aug 08:47,

3 o) —@ 1:13:49/1:30:01

“Green Hydrogen will be India’s
biggest goal for providing a quantum
jump to address climate change”

Near Term (2030-2035)

e Aim for 5 MMTPA green H2 (8% RE capacity)
e Phased replacement of grey in refining & fertilizer

| ® Green H2/ green NH3 hub for export, bunkering

Mid Term (2040)
e Reach 12 MMTPA green H2 (20% of 500 GW RE)

M= K e Shift diesel backup power generation to H2-FC/ ICE

e Shift HCVs to H2-ICE/ FCEV by 2045

Long Term (> 2050)

“w.| ® At least 70 MMTPA commensurate with Indian economy
e Shift steel, cement to H2 technologies
| ® Grid balancing/ curtailed power




Opportunities Lie Across Hydrogen Value Chain
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Production

Hydrogen Color Spectrum

GREEN HYDROGEN GREY HYDROGEN BROWN HYDROGEN

Hydrogen produced by electrolysis of Hydrogen produced using fossil fuels Hydrogen extracted from fossil fuels
water, using electricity from renewable such as natural gas. This accounts and created through coal gasification.
sources like hydropower, wind & solar. from roughly 95% of the hydrogen

Zero carbon emissions are produced. produced in the world today.

BLUE HYDROGEN PINK/PURPLE/RED YELLOW HYDROGEN

Grey or brown hydrogen with its C02 Hydrogen obtained by electrolysis Hydrogen made through electrolysis
sequestered or repurposed. through an atomic current using nucle- with solar power.
ar power.

WHITE HYDROGEN TURQUOISE HYDROGEN
Hydrogen produced as a byproduct of Hydrogen produced from natural gas
industrial process. using the molten metal pyrolysis tech-

notogy.




Hydrogen Rainbow — Indian Relevance

5 MMTPA (100% of H2) produced in India today, 10 T-CO2/T-H2

110 BnT coal reserves of India; Petcocke; Major thrust of gasification; CTH; 18 T-CO2/T-H2

Basis for NHM for India; Water electrolysis using RE; 450 MnT biomass; < 1 T-CO2/T-H2

Needs major impetus on CCUS; Inertness/ costs/ safety; < 3 T-CO2/ T-H2

Lower energy required than water electrolysis; C-sale credit; CBG pyrolysis; Carbon negative




@ GOVERNMENT OF INDIA

) @IS VRISl India’s 2030 green H, production target

— — 5 .0
= MMTPA
100 GW 40 GW USD 100 billion*

Producing 5 MTPA of green hydrogen

50 MMT (1.6%) 68% X'40,000 Cr
<
CO, reduction LNG import Revenue saved
reduction

*Includes renewable energy, electrolyser and hydrogen storage costs | Source: CEEW analysis

CEEW

HE COUNCIL



The LCOH of Green Hydrogen

Net present value of total projected lifetime cost of GH2 production plant

LCOH = — o
Net present projection of total hydrogen produced over lifetime
Present Near Term Future Aspiration
Parameters UOM
(1-10s MW) | (100s MW) | (0.5-1 GW) ($1/kq)

LCOH $/kg 4.8 3.0 1.5 1.0
Electrolyzer CUF % 23 23 23 40
Specific Electricity Consump. kWh/kg-H2 52 52 46 43.5
Electrolyzer Installed Capital Cost $/kW 900 450 250 250
Electricity Cost (LCOE) INR/KWh 2.1 2.1 1.5 1.5
Fixed O&M % of capex 1.5 1.5 0.75 0.75
Variable OPEX $/KW 1 1 0.5 0.5
Return on Equity % 14 14 14 10
Interest on Loan/ Debt % 8 8 8 5




The LCOH of Green Hydrogen

Present Aspirational
5.7%  0.3% 2.3% - 02%  23%
6.1%
16.4% 8.5% 4.2%
8.9%
1.0%

1.7% ;

0.6% 0.0%
Fixed O&M = Electricity Cost m Other OPEX and feed cost
= Replacement Cost Interest on Working Capital Principal Payment
= Interest on Debt = Return on Equity = Tax

®# Decommissioning Cost



The LCOH of Green Hydrogen

Key take-aways: It is possible to achieve LCOH < 2 S/ kg for GH2 by electrolysis if:

1. The opex can be reduced by

o Having access to LCOE of < 2 Rs/ kWh
* This may be possible for an integrated solar-electrolysis plant at scale
* Buying cheaper RE in off-peak hours instead of curtailing it
* Improving CUF through solar-hybrids
* Cheaper energy storage

o Optimizing the sizing of solar and electrolysis plant for available CUF (without RE storage)

o Reducing power consumption of electrolyzer per kg GH2 — emerging technologies, high operating

pressure

2. The plant capex can be reduced through
o Scale
o Indigenization of BOP, PE and stack components

3. The cost of capital is reduced through
o Policy intervention in the initial phase
o Access to green capital



Unlocking H2 Potential

 Ukraine crises; NG prices soaring; EU doubling its H2 demand

1 Major thrust for export

 Massive incentives in the initial phases by EU, US

O PLI, Interstate Transmission Charges Waiver, Free banking for 30 days

[ Hydrogen valleys, major pilots

1 Mapping H2 potential for India basis land, water, solar-wind potential, biomass, export potential
L RSC harmonization

O Significant R&D investments by all countries

1 Make in India can’t be just Assembled in India

O It has to be Invent + Make in India

O India must leverage its Enormous R &D Prowess



R&D Structure and Phased Plan

Mission Mode Projects

Short term (0 - 5 years)

Focus on end product development

Industry partnership

Aggregate and leverage existing capabilities and infrastructure

Grand Challenge Projects

Mid term (0 - 8 years)

Focus on critical technology to overcome license denials & supply constraints
Industry partnership in consortium mode

Augment existing capabilities and infrastructure, set up new models for fast translation

|

Blue sky Projects

Long term (0 - 15 years)

Focus on global IP, competitive advantage

Special funding to attract best globally sourced Indian talent

Augment competencies and infrastructure in academia, R&D institutions




Genesis of CSIR’s H2 Program

PDS'TIONING NM'TL' - PROJ ECTS « 2002 NMITLI program on hydrogen conceived
L

Industry participation from the beginning
Methanol reformer for H2 production
2004 PEM electrolyzer program initiated
2005 Bio-H2 supported by DBT, MNRE

2009 PEMFC program initiated
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’ 2010 SOFC program initiated
India so far

operated here « 2013 Hydrogen for steel program initiated

Market Certainty « 2014 Coal gasification PP was initiated




CORE STRENGTH

v' Multidisciplinary expertise

v’ Fuel cell system development and demonstration

v IP and Know-How

v’ State-of-the-art facilities for fuel cells and public-private mode partnerships
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Challenges

Dependence on Cost of S——
Import Hydrogen HIGH COST

(Bottleneck in

System commercialization
Lack of of fuel cell)
Robustness and
Infrastructure
Safet

19
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In-house developed fuel cell components and PEMFC stacks at CSIR

TR
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Composite membrane

Flow pattern on graphite sheet Silicone gaskets

S 2

current collector Al end plate Coolant plate
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Making PEMFC affordable for Automotive Application

(By replacing graphite bipolar plate with metallic plate)

Graphite

=

7-10 % reduction in
stack cost

50 % reduction in
stack size

Processing of the plate
consists of 3 steps

aﬁ,’é! ] ]
} Low corrosion resistance,
o . .
Problems  High contact resistance

N Coating /Surface Treatment
B _ (TiN, Plasma Nitride, Gola‘)\

Graphite

*Fabrication of the plate
*Pre-treatment of the plate
*Coating process

6 times lighter for
maximum output power

Solution




LT-PEM Fuel Cell for Automotive Application
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Prototype Demonstration Fuel Cell Car

CSIR, KPIT conduct successful
trial runs of hydrogen fuel cell
prototype car

HFC technology uses chemical reactions between hydrogen and oxygen

0.9

0.8

E (from air) to generate electrical energy, eliminating the use of fossil fuels.

g‘ 0.7 ‘ Current Density = 1.04 A/cm? PTI « October 11, 2020, 08:56 IST
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New Delhi: The Council of
Scientific and Industrial
Research (CSIR) and KPIT
Technologies successfully ran
trials of India's first Hydrogen
Fuel Cell (HFC) prototype car
running on an indigenously
developed fuel cell stack, a
statement said on Saturday.
24
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Flow Field Design Single Cell Assembly
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‘b’ High Temperature Proton Exchange Membrane Fuel Cell for CHP Application
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Indigenous Fuel Cell Design Developed 5-kW HT System
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[SOLCAT-HY device: Broad
Band Absorption PV Cells
and WE as unified
standalone reactor]

Integrated SOLCAT system for Solar Hydrogen

Reactor 2
(b) Upconversion Iyl
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Open Cathode PEM Fuel Cell — Backup Power Application
N 4

Conventional Fuel Cell System
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CSIR’s Efforts - Fuel Cell Stack Test Protocols

Automotive Grade Stack
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6.3 Step 3: Carrying out the Long Term Durability Steady Test

During this test step, the static test inputs are to be maintained at their
values within the specified ranges (see Table 4 or Table 5).

All the test inputs and outputs should be measured versus the test
duration.

The main purpose of step 3 is to determine stack voltage (and the stack
power) evolution of voltage in terms of V/hours when submitting the stack
to a fixed load during a long period. A first value of the stack voltage at
i 1ad nom IS measured when the operating conditions have all reached a
stable value. The conclusion of the test referring to the qualification of the
stack tested will partially be based on this initial value.

The long term durability test will include long term steady steps and
polarization curves. The polarization curves will be performed at fixed
intervals corresponding t max/10 where t max is the maximum duration
of the test as defined by the specific objective of the test module: t max
can be fixed between 500 and 10,000 hours depending on the operating
conditions and on the application concerned.

So the measurement step of the test will follow the sequence:

Initial polarization curve starting at t = 0 after stabilization at i load
Long term steady test phase n°1

Polarization curve n°2 at t = t max/10

Long term steady test phase n°2

Polarization curve n°3 at t = 2 x t max/10 ...

Long term steady test phase n°(n)

Polarization curve n°(n+1) att = n x t max/10 with 1 £n £ 10

The comparison of the final polarization curve with the initial one will be used
to qualify the performance loss of the stack on the entire range of current
density in order to analyze the causes of performance degradation if any.

Voltage®erelldv)a

1=

Note: other analytical methods can be applied during or after the end of the cycling step in
order to help understanding the performance evolution. Recommended methods: Cyclic
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Fuel Cell Test Station Standards and P&ID
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P&ID with international safety standards for
Hydrogen Fuel Cell (PEM) and Electrolyzer
(PEM and AEM) test stations is available




| CSIR Events for Hydrogen Technology in India

Prototype Demonstration Fuel Cell Car

CSIR, KPIT conduct successful NV Rt , = e v A
trial runs of hydrogen fuel cell Demonstration of High Temperature PEMFC based Combined

profotype.car Cooling & Power System on 26" September 2019

HFC technology uses chemical reactions between hydrogen and oxygen
(from air) to generate electrical energy, eliminating the use of fossil fuels.

PTI » October 11, 2020, 08:56 IST
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New Delhi: The Council of
Scientific and Industrial
Research (CSIR) and KPIT
Technologies successfully ran
trials of India's first Hydrogen
Fuel Cell (HFC) prototype car
running on an indigenously

developed fuel cell stack, a
statement said on Saturday.

Demonstration of Fuel Cell
Electric Vehicle (FCEV) on 07t

Oct 2020 Launch of India’s First Indigenous Fuel Cell Bus December 15, 2021

SERVE THE NATION THROUGH SCIENCE



CSIR H,T Program Structure (2022-24)

J 100 Cr program ‘ Focussed Basic Research
0 18 CSIR laboratories N A e
J All 3 parts of the H2 value chain: Production/ Storage/ Utilization . Translational

. Research
- Structured to facilitate ideas to markets

J From component level to system level to products
- Focus on developing key strategic materials for H2 technologies
< India focussed, but globally benchmarked & globally competitive
- Deep partnerships with Indian industry

- Vendor development with SMEs

J Skill development programs

 Assist in development of RSCs (Regulations/ Standards/ Codes)

- National testing facilities

(;‘i] 3z1|e1213WWO0?) 03 UOISSIIA <"rj
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J Strategy and roadmaps for Gol and industry (Hubs, pilots) Products/ Process

@ GATE



Summary
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Prgress hroui Resarc o MNRE is leading the harmonization efforts in India (3 working groups)

‘ o Indian R&D institutions and academia need to get better embedded in the
RSC ecosystem

MORTH

sovernment of Indiz

o Extensive testing facilities exist/ can be created in these institutions

o Deep understanding of technology is available

o Expertise on critical analysis such as LCA is available

) o Collaborations/workshops with global SDOs will be beneficial
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Prototype Demonstration Fuel Cell Bus
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